
1

MICROFLOWS

Author: Dr. Javier Navarro-Machuca,
IO Connect Services

contact@ioconnectservices.com
www.ioconnectservices.com

http://www.ioconnectservices.com

2

TABLE OF CONTENTS

Introduction ... 3

Common implementation problems
in system integrations ... 4

What is a microflow? ... 7

Anatomy of a microflow .. 8

The principal components of a microflow 8

Inter-flow communication .. 10

Migrating a legacy integration flow
to microflows .. 11

Addressing common implementation problems
in system integrations with microflows 13

Summary .. 16

References .. 16

3

INTRODUCTION

In this post, I introduce the concept of Microflows. A Microflow is the
combination of a Microservice and a well-defined transaction
integration flow implemented with an Integration Framework
Library.

The concept of Microservices has been trending in the last couple of
years. In my point of view, Microservices is a way to streamline some
of the principles of the Service Orientation Architecture paradigm
(SOA): service loose coupling, service abstraction, service
reusability, service autonomy, service statelessness, service
composability. On the other hand, governance complexity increases
since you end up with many software assets that you need to
maintain, version, and standardize. Therefore, service discoverability
and standardized service contract principles are extremely
important in order to achieve a good level of service governance.

For many programmers and software architects, SOA is a synonym
of ESB (enterprise service bus). An ESB tool is mainly a compound of
SOA patterns that can be used together to integrate services and
monolithic applications that usually do not implement the same
communication protocols and define a different data model. These
differences usually bring the burden of endpoints call
orchestrations, data model and data format transformations,
protocol bridging and service transaction management [2] entirely
to the ESB layer. Mule and Apache Camel are good lightweight ESBs
and integration libraries options to avoid the high cost of big and fat
ESB platforms.

4

Bad transaction design
In many cases – especially in implementations with ESB platforms
– the entire integration flow has no proper transaction design; the
flow is composed of many activities that do not share the ACID
transaction properties or do not compensate transaction routines
in case that any activity fails. This problem introduces data
inconsistency across the applications that receive information
handled by the flow, creating a lot of complexity in compensating
for the system failures.

Weak or missing fault tolerance controls
Bad transaction design usually lacks fault tolerance controls.
Sometimes, well-design transactions implement weak fault
tolerance mechanisms, leaving all the responsibility to the ACID
properties to guarantee data consistency and durability across
applications, especially in distributed systems. A good example of
this is when one of the transaction activities needs to keep data
into a system or application that cannot be enrolled in the
ambient transaction, such as in the two-phase commit protocol.
Another common example is when the integration transaction
rolls back without providing a way to automatically retry the
execution or to notify a compensating process for further retry or
to alert a person via email, log system or a dashboard.

COMMON IMPLEMENTATION PROBLEMS
IN SYSTEM INTEGRATIONS

In this integration flow, the trigger email activity executed
successfully while the archive file activity failed. The lack of fault
tolerance controls like a retry and bad transaction design leaves
an inconsistent state of the data.

5

Lack of metrics definitions for alerting controls
Logging process activity in integrations is a common practice to
record successful or unsuccessful executions in software
applications. In many cases, the logs are not further processed or
analyzed automatically by other applications to raise alerts when
an unexpected result or a severe problem is found.

It is common that the logs are referenced as a reactive measure
(several hours or days after) to find any information that can help
with identifying the root cause of the problem. Defining the right
metrics to log is no easy feat; it is important to analyze and classify
what the data points are and how they can provide us with the
right metrics for an application to log. Good data metrics will
facilitate the automation of raising alerts to either prevent or
rapidly react to a problem.

Shared or global configuration dependencies
This recurrent practice is found when there are several
applications sharing the same application host. One example is
when there is more than one application exposing web services via
common ports 80 for HTTP or 443 for HTTPS. In this case, one
single component is configured at the server level globally to be
shared by all the web service apps. This convention breaks the
autonomy of the applications since, if the configuration needs to
be changed to fulfill the requirements of any one application, it
might affect all the rest, forcing us to test any other application
that would be impacted. Test automation is a good way to
mitigate this risk. This is something that is usually desired but
rarely carried out.

Monolithic scalability
This is found when several integration flows are implemented in
one single application where the flows are executed concurrently.
If there is a need to scale one of the flows within the application
due to load increase or usage, the entire application will be
deployed to satisfy this demand. This might introduce several
problems if not all the flows were designed to run with several
instances in parallel. Some of the few unwanted result examples
are data inconsistency, excessive computer resource consumption
or random errors that are difficult to trace.

6

Despite being very common in system integrations, the previous
problems are not unique to integration flows, in fact, there are
many best practices and guidelines to avoid them in application
development, such as SOA principles and Microservices.

7

WHAT IS A MICROFLOW?

A Microflow is the combination of a Microservice and a well-
defined transaction integration flow implemented with an
Integration Framework Library.

The main reason for using an Integration Framework Library like
Mule or Apache Camel is to take advantage of the implemented
65 integration patterns [3]. The implementation of the patterns
 is proven, tested, and maintained in these integration libraries,
so we do not need to reinvent the wheel and custom implement
them when we want to use a Microservices approach instead
of an ESB.

8

Microflows promote service autonomy and abstraction; it exposes
a well grain-defined public interface to communicate with external
applications, like other Microflows. Like Microservices, it is key to
set a good application boundary for our Microflows. Containers are
a good artifact that can help us to achieve the application division
that we are looking for.

Docker is very popular in the containerization world, and we can
find images of almost all application runtimes and servers.
Therefore, it is very tempting to utilize an App Server like Mule
Server or Apache Server to host our integration applications. I do
not recommend this practice since it can break the desired
application independence. If we host more than one app in the
Docker App Server image, we are practically taking the common
integration problems to the next level. Instead, we should host a
lightweight application process in our containers, where the main
dependency is the application run-time – like JRE or .NET. Docker
OpenJDK [4] is a good image to use for our purpose.

THE PRINCIPAL COMPONENTS OF A MICROFLOW

Integration Framework Library
This library must provide a good compound of enterprise
integration patterns. Integration flows should use these patterns
for integration solutions “ranging from connecting applications to
a messaging system, routing messages to the proper destination,
and monitoring the health of the messaging system.” [3]

Application Package
This is the package of code libraries—compiled or to be interpreted
— that will be executed by the run-time system.

ANATOMY OF A MICROFLOW

9

Container Image
A container image is the basis of containers. The containers
are instances of these images. Docker’ glossary defines an
Image as “the ordered collection of root file-system changes
and the corresponding execution parameters for use within a
container run-time. An image typically contains a union of
layered file- systems stacked on top of each other” [5].

This image shows a blueprint of the anatomy of a Microflow.
The integration flow is implemented in an Integration
Framework Library like Mule or Apache Camel, wrapped in a JAR
file, and hosted in a Docker Java image.

10

INTERFLOW COMMUNICATION

How to achieve inter-service communication is a common
discussion when designing Microservices. This should not be
foreign to Microflows either. Many purists may say that the best
way to communicate services should be via HTTP with RESTful
interfaces. When talking about system integrations, especially
when uptime is not a quality that all systems, applications, and
third parties have, there is a need to guarantee successful data
exchange delivery. While in Microservices the arguments focus
mainly on sync vs async communication, Microflows do it in terms
of system availability and SLAs. Messaging patterns fit most of the
system integration needs very well, regardless of the
communication protocol used.

To make our integrations more resilient, we need a buffer between
our services when transmitting data. This buffer will serve as the
transient storage for data messages that cannot be processed by
the application destination yet. Message queues and event
streams are good examples of technologies that can be used as
transient storage. The Enterprise Integration Patterns language
defines several mechanisms that we can implement to guarantee
message delivery and how to set up fault tolerance techniques in
case a message cannot reach its destination.

A Microflow should not be limited to one simple message
communication exchange, in many cases, we need to expose
different channels for integration, allowing the consumer to decide
what message channel exchange fits better its integration use
case. I recommend that for every Microflow, you expose an HTTP/S
endpoint and a message queue listener as the entry inbound
components of the flow.

11

MIGRATING A LEGACY INTEGRATION
FLOW TO MICROFLOWS

To migrate legacy implementations of integration flows to
Microflows, it is necessary to have a good understanding of
transaction processing [6] and better yet, experience. Transaction
processing will help us with identifying indivisible operations that
must succeed or fail as a complete unit, and any other behavior
that would result in data inconsistency across the integrating
systems. These identified indivisible operations are the
transactions that we will separate to start crafting our Microflows.
Each single transaction must fulfill the ACID properties [7] to
provide reliable executions. There are some design patterns that
can facilitate the transaction design and implementation like the
Unit of Work [8].

System integrations commonly exchange data among applications
distributed in different servers and locations, where no single node
is responsible for all data affecting a transaction. Guaranteeing
ACID properties in this type of distributed transactions is an
important task. The two-phase commit protocol [9] is a good
example of an algorithm that ensures the correct completion of a
distributed transaction. One main goal when designing Microflows
is that one Microflow’s implementation handles one single
distributed transaction as a whole.

Database management systems and message brokers are
technologies that normally provide the mechanisms to participate
in distributed transactions. We should take advantage of this
benefit and always be diligently investigating what integrating
systems or components can be enlisted in our Microflow’s
transaction scope. File systems and FTP servers are commonly not
transaction friendly, for this purpose we need to use a
compensating transaction [10] to undo a failed execution to bring
the system back to its initial state. We need to consider what our
integration flow must do in case the compensating transaction
also fails. Fault tolerance techniques are key to maintaining system
data consistency in this corner scenario

12

Dead letter queues and retry mechanisms are artifacts that we
should always consider as ways to improve our fault tolerance in
our transaction processing. If we are creating Web APIs, our APIs
must provide operations that we can use to undo transactions.

In summary, these are the steps to follow when migrating a
legacy integration flow app to Microflows. The steps are not
limited to Microflows migration since they can be used to design
Microflows integrations from the green field:

1. Identify all the indivisible transactions in the implementation

2. Separate each transaction in its own flow

3. Promote each transaction to a Microflow
4. Identify what activities and integrating components can enlist
to a distributed transaction
5. Define a compensating transaction for each integrating
component that cannot enlist to a distributing transaction
1. Analyze what compensating transactions must be
promoted as Microflows

6. Communicate Microflows via channels that can enlist to
distributed transactions (via two-phase commit protocol or
message acknowledgments) and that provide message reliable
delivery like message queues, stream events, etc.

13

ADDRESSING COMMON
IMPLEMENTATION PROBLEMS IN SYSTEM

INTEGRATIONS WITH MICROFLOWS

Bad transaction design
To address this problem, it is necessary to carry out steps 1
through 3 of the Microflows migration steps. First, we need to
identify all the indivisible transactions by leveraging design
techniques like state machine diagrams. Each state usually
represents one activity that needs to be executed in an integral
fashion to meet the post-conditions needed to move to the next
state. If any of the conditions are not met, the integration flow
must undo any partial execution and move back to the original
state. Second, we separate each indivisible transaction in its own
flow, which will facilitate working on the integrating activity in
isolation. This step facilitates the design and development of good
practices like unit testing and user acceptance testing.
Finally, we promote each transaction to a Microflow to deploy in
our solution environments. This will help us to treat any Microflow
independently to better maintain and support it.

Monolithic scalability
With Microflows, we do not need to redundantly deploy our whole
integration blueprint to handle load peaks or to provide high
availability to the application consumers. Microflows support high
availability since they can scale horizontally and we can cherry-
pick the strategy to scale each one independently: a Microflow with
a synchronous web service interface can be set in a cluster with a
minimum of X instances running for availability purposes, whereas
a Microflow that listens to a message queue can scale based on
computer resources usage or queue length.

The intrinsic transnational design promoted by Microflows helps
substantially with improving fault tolerance by making our
integrations more resilient to error recovery due to the ACID
properties. In many cases, this is not enough, and we need to

14

put other mechanisms in place to assure that our transaction will
be executed successfully. Some examples of fault tolerance
mechanisms and patterns are redundancy, error escalation to
dead letter queues and poison queues, and compensating
activity, among others.

One major advantage of using an integration framework library for
the core development of Microservices, is that a big subset of the
implemented 65 enterprise integration patterns facilitates (if not
yet implemented entirely) the correct application of many fault
tolerance controls.

Lack of metrics definitions for alerting controls
Another advantage of using queues as a mechanism to
communicate Microflows is that we can easily set up monitor and
alert controls on the queue itself. Alerts can be set up based on
message longevity (e.g., alerting when a message has been in the
queue for more than X hours), queue length (e.g., alerting when
there are more than Y number of messages in the queue), etc.
These alerts will tell us when something is wrong in our
integrations such as when a third-party system is not working.
Dead letter queues are very useful for this purpose; we can trigger
alerts as soon as a DLQ contains one or more messages. Many
monitoring tools offer plug-ins to set up alerts on the integration
components based on resource limit usage.

Business based alerts must not be forgotten either; we should be
able to send notifications to stakeholders when a transaction
presents a problem based on business values conditions. The
design principles of Microflows facilitate the implementation of
business alerts since we can focus on it in isolation, based on the
use case that such Microflow implements, on what notifications
need to be sent for that given integration transaction.

Shared or global configuration dependencies
Microflows promote process and resource configuration and
access autonomy. Each Microflow instance is responsible for
accessing computer resources as needed to achieve the
successful execution of the integration transaction. One Microflow

15

may be polling an FTP server in a higher frequency than the
rest. This is a good example of why the practice of creating
global configurations for computer host consumption is not
recommended, otherwise, we might be forced to share the
global configuration that is not optimal for the transaction
needs. Microflows can be tuned and maintained in isolation,
without having a significant impact on each other.

16

SUMMARY

Microflows are the result of applying Microservices design
principles to system integrations flows that are implemented
with an Integration Framework Library. The practice of
Microflows moves system integrations away from a centralized
ESB orchestration approach to a more distributed and
decentralized choreography of independent transactions that
form a wholly cohesive system integration solution. Several
common integration problems were discussed and addressed by
using Microflows principles. Specific examples of Microflows
implementations targeting the pointed integration problems will
be covered in future articles.

REFERENCES

[1] https://en.wikipedia.org/wiki/Service-orientation_design_principles
[2] http://soapatterns.org/
[3] http://www.enterpriseintegrationpatterns.com/
[4] https://hub.dockevr.com/r/_/openjdk/
[5] https://docs.docker.com/engine/reference/glossary/#image
[6] https://en.wikipedia.org/wiki/Transaction_processing
[7] https://en.wikipedia.org/wiki/ACID
[8] http://wiki.c2.com/?UnitOfWork
[9] https://en.wikipedia.org/wiki/Two-phase_commit_protocol
[10] https://en.wikipedia.org/wiki/Compensating_transaction

https://en.wikipedia.org/wiki/Service-orientation_design_principles
http://soapatterns.org/
http://www.enterpriseintegrationpatterns.com/
https://hub.dockevr.com/r/_/openjdk/
https://docs.docker.com/engine/reference/glossary/#image
https://en.wikipedia.org/wiki/Transaction_processing
https://en.wikipedia.org/wiki/ACID
http://wiki.c2.com/?UnitOfWork
https://en.wikipedia.org/wiki/Two-phase_commit_protocol
 https://en.wikipedia.org/wiki/Compensating_transaction

